Khinchine Type Inequalities with Optimal Constants via Ultra Log-concavity

نویسندگان

  • Piotr Nayar
  • Krzysztof Oleszkiewicz
چکیده

We derive Khinchine type inequalities for even moments with optimal constants from the result of Walkup ([15]) which states that the class of log-concave sequences is closed under the binomial convolution. log-concavity and ultra log-concavity and Khinchine inequality and factorial moments

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities of extended beta and extended hypergeometric functions

We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeomet...

متن کامل

Strong log-concavity is preserved by convolution

We review and formulate results concerning strong-log-concavity in both discrete and continuous settings. Although four different proofs of preservation of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong log-concavity under convolution has apparently not been investigated previously in the continuous c...

متن کامل

Poisson processes and a log-concave Bernstein theorem

We discuss interplays between log-concave functions and log-concave sequences. We prove a Bernstein-type theorem, which characterizes the Laplace transform of logconcave measures on the half-line in terms of log-concavity of the alternating Taylor coefficients. We establish concavity inequalities for sequences inspired by the PrékopaLeindler and the Walkup theorems. One of our main tools is a s...

متن کامل

Log-concavity of Stirling Numbers and Unimodality of Stirling Distributions

A series of inequalities involving Stirling numbers of the first and second kinds with adjacent indices are obtained. Some of them show log-concavity of Stirling numbers in three different directions. The inequalities are used to prove unimodality or strong unimodality of all the subfamilies of Stirling probability functions. Some additional applications are also presented.

متن کامل

Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures

Sufficient conditions are developed, under which the compound Poisson distribution has maximal entropy within a natural class of probability measures on the nonnegative integers. Recently, one of the authors [O. Johnson, Stoch. Proc. Appl., 2007] used a semigroup approach to show that the Poisson has maximal entropy among all ultra-log-concave distributions with fixed mean. We show via a non-tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011